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Diabatic gas flows 

By H. MARSH 
Engineering Department, Cambridge University 

AND J. H. HORLOCK 
Department of Mechanical Engineering, Liverpool University 

The general equations of motion are developed for a compressible, inviscid flow 
in which a non-uniform distribution of heat transfer is applied to the fluid or a 
non-uniform generation of heat per unit voIume occurs's. In  general, vorticity 
can be created if the cross-products of the temperature and entropy gradients 
are finite. If the temperature gradients in the flow are small (first-order), then 
a non-uniform heat addition across the stream will produce a second-order 
change in vorticity. For this type of flow, solutions are obtained for the varia- 
tions of velocity and density that occur in a two-dimensional plane flow and an 
axially symmetric three-dimensional flow. A simple expression is also obtained 
for the streamline displacement caused by the non-uniform addition of heat. 

1. Introduction 
The coupling that exists between velocity, vorticity and gradients of stagnation 

enthalpy and entropy is well known. Tsien (1958) and Vazsonyi (1945) have 
reviewed the equations of motion for gas flows in which temperature and entropy 
gradients are present. The work described in this paper deals with the flow which 
is produced when a non-uniform distribution of heat transfer is applied to a 
gaseous stream or a non-uniform generation of heat per unit volume occurs. 
I n  practice such flows may take place in heat exchangers and nuclear reactors 
when a local hot spot develops, or in the flow through a flame front in which 
energy is released non-uniformly across the stream. 

The general equations of motion for an inviscid, compressible fluid with 
vanishing thermal conductivity are first developed, a term allowing for the heat 
addition being included in the energy equation. The equations for a two-dimen- 
sional diabatic flow are next considered, and the equations for the velocity, 
vorticity and density perturbations are obtained. For the special case in which 
the temperature gradients are small, two analytical methods of solution and one 
numerical method are given for subsonic flows. A simple example is given to 
illustrate two of these methods and to allow a comparison to be made between 
the two solutions. A brief discussion of an axially symmetric diabatic gas flow 
then follows, and an example of such a flow is given. 

2. The general equations of motion for a diabatic gas flow 
The momentum equation for an inviscid flow is 
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where p is the pressure, p the density and q the velocity vector. Alternatively, 
using the identity 

where w = V x q is the vorticity, equation (1) may be written as 

V(*S2) = ( q  - V) 9 + 9 x w, 

1 
:Vp+V(+q2) = q x w 
iJ 

for a steady flow. 

velocity magnitude q by the equation 
The stagnation enthalpy h, is defined in terms of the enthalpy h and the 

so that 
h, = h + &', 

Vh, = Vh+V(&2). 
(3) 

(4) 

From the Gibbs equation relating the properties of the fluid, 

( 5 )  

( 6 )  

1 

P 
TVS = Vh--Vp, 

Crocco's equations is obtained as 

Vh,-TVs = q x W, 

where T is the temperature and s the entropy of the fluid. 

steady-flow energy equation is 

Since the flow is steady, the equation of continuity is 

If the heat addition to the fluid is 0 per unit volume per unit time, then the 

0 = v * (pqh,). (7) 

v. (pq)  = 0, 
so that (7) may be expressed as 

0 = pq.Vh,. 

By taking the curl of (6), an equation corresponding to the Helmholtz equation 

(10) 
is obtained: 

For barotropic flows (e.g. isentropic or isothermal flows), V T  x Vs is zero, which 
is apparent from taking the curl of (5). The usual form of the Helmholtz equation 
for a barotropic flow then follows from (10). 

If the fluid is a perfect gas with p = RpT and cp, the specific heat at constant 
pressure, a constant, then the steady-flow energy equation is 

V T  x VS = ( 9 .  V) W- (w. V) q + w(V.  9). 

From equations (1) and (8) ,  the first term on the right-hand side of (1 1) is 

q . V T  = %.V(;) 

= g  (hp-pvP) P 
R' P 

PR R 
P 9 = -- v .q --. (q .V)  q. (12) 
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Using the identity given above (2) along with (12), equation (1 1) may be written 
as (9) Q = V . q - - - . ( q . V ) q ,  q 

P kRT (13) 

where k is the ratio of the specific heats of the gas. This equation has proved to 
be the most useful form of the steady-flow energy equation for the purpose of 
this paper. 

3. Two-dimensional flows with heat addition 
When a perfect gas flows along a parallel-sided duct, the presence of a non- 

uniform addition of heat can produce a region in which the streamlines are not 
parallel to the walls of the duct. By using a perturbation method for a heat 
addition with only a small degree of non-uniformity, it is possible to demon- 
strate some of the characteristics of this type of flow. As shown in figure 1, the 
x-axis is taken along the duct wall, the y-axis lies across the duct and there is no 
flow normal to the (2, y)-plane. The addition of heat is non-uniformly distributed 
along and across the duct. 

x = - - - , /  of flow 

- ,  (a, 0) 

FIGURE 1. Two-dimensional diabatic gas flow. 

In  a two-dimensional flow where u and v are the x- and y-components of 
velocity respectively, and 7 is the only component of vorticity, in a direction 
normal to the (2, y)-plane, the equations of momentum, continuity and energy 
are 

- lap au au 
pax ax ay’ 

- - u-+v- 

For this two-dimensional flow, equation (10) becomes 

which shows the possibility of producing changes in vorticity by the presence of 
temperature and entropy gradients. 

It is assumed that the Mach number of the flow is less than unity, and that far 
upstream of the region of heat addition the gas has a uniform velocity U along 
the duct and a Mach number B. The properties of the gas far upstream are also 

33-2 
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assumed to be uniform across the duct and are used to make the above equations 
non-dimensional by writing 

x = bx', y = by', u = Du', v = VV', 1 

- -  
where P, T and D are the pressure, temperature and density far upstream and 
b is the width of the duct. The non-dimensional forms of equations (14) to (17)  
are then 

where, for convenience, the primes have been omitted. 
If the heat addition function P ( x ,  y) can be expressed as 

P(z ,  Y) = Po(%) + $(x, Y), (24) 
where E < 1 and Po(x) and f(x, y) are of the same order of magnitude, then a 
perturbation method may be applied to the problem. The function Po(x) repre- 
sents a heat addition which can vary along the duct, but is uniform across the 
duct. The second term, ef(x,y), indicates the presence of a small non-uniform 
heat addition which can vary both along and across the duct. It is this non- 
uniform heat addition that produces the displacement of the streamlines and 
the creation of vorticity. 

It is assumed that the variables u, v, 7, p, p and 8 are analytic in E and may be 
expressed as power series in 8, the general form being 

etc. I u = UO+EU1+E2U2+ ..., 
v = €V1+E2V2+ ..., 

If equations (24) and (25) are substituted in equations (20) to (23), then, 
equating the zero powers of B,  we get 
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These are the equations for a one-dimensional Rayleigh-line process, the addition 
of heat to a one-dimensional steady flow. The solution is well known; the velocity 
and gas state vary along the duct, but there is no variation across the flow. 

By equating the first powers of 8 in equations (20) to (23), the equations 
relating the first-order perturbations in velocity, pressure, density and tem- 
perature are obtained: 

The solution of these equations gives the perturbations of velocity and gas state 
which are superposed on the one-dimensional Rayleigh-line process. 

If p1 and p1 are eliminated from the momentum and continuity equations 
((27) to (29)), then an equation connecting the two perturbation velocities is 
obtained : 

Introducing the vorticity and the uniform heat addition, this equation may 

A further equation relating the two perturbation velocities may be derived 
by using the equation of state for the gas to eliminate el from (30), and then 
differentiating with respect to y to obtain 

The two velocities u1 and v1 are therefore determined by (31) and (33), along with 
the appropriate boundary conditions. 

Two of the boundary conditions are those imposed by the duct walls, namely 
v = 0 on y = 0 and y = 1. It then follows from (32) that in the presence of a heat 
addition for which Po(x) is not zero, the vorticity perturbation ql can only be zero 
if the transverse velocity v1 is also zero throughout the flow. This is the case of 
the one-dimensional Rayleigh-line process where the flow remains parallel to 
the walls of the duct and &x, y) = 0. When Po(x) = 0 and only the small non- 
uniform heat addition is present, the change of vorticity may be shown to be a 
second- or higher-order perturbation. This case is examined in more detail in 
the remainder of this paper. In general, if neither Fo(x) nor $(x, y) are zero, 
then there will be a first-order perturbation in vorticity. 
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4. Two-dimensional flows with Fo(x) = 0 

No solution has yet been obtained for the general case when both Fo(x) and 
&x, y) are present. However, it is possible to observe some of the features of 
two-dimensional diabatic gas flows by considering the special case of Po@) = 0. 
The heat addition then consists of the small non-uniform heat addition alone 
and the temperature gradients are therefore small. For this type of heat addition, 
a general solution for the first-order velocity perturbations has been derived 
in the form of an integral, and for a particular distribution of heat addition both 
a Fourier series solution and a numeiical solution have also been obtained. 

In the absence of the uniform heat addit'ion Fo(x), the solution of equations ( 2 6 )  
for the one-dimensional Rayleigh-line process is that u,, p,, po and 8, are each 
constant and equal to unity, their value far upstream. The Mach number of the 
flow is therefore constant and equal to s, the value far upstream. The first- 
order perturbations of velocity, pressure and density are then given by 

which correspond to (27) to (30) of the general analysis. 
The elimination of p1 between (34) and (35) gives 

-= 0, 
ax 

and since the flow far upstream is uniform, the first-order vorticity perturbation 
is zero throughout the entire flow. It is therefore possible to define a perturbation 
velocity potential $(x, y) such that 

Equation (37) may then be written as 

If the heat addition is confined to a finite length of the duct, say 2 = 0 to 
II: = a in the non-dimensional system, then the boundary conditions for (40) are 

%-+o, as x+--oo, 
ax aY 
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where a2 = I/( 1 - B2) .  The second pair of conditions are necessary to leave the 
flow far upstream unperturbed and the final boundary condition is obtained 
from the other conditions by applying Green's Theorem to (40). 

Integral solution 
The solution of (40) for a unit heat source situated at the point (xo,yo) is the 
Green function G(x, y; zo, yo), for the problem. It can be shown that the 
perturbation velocity potential may then be expressed as 

4(GY) = j a ~ l f ( ~ o ~ Y o ) G ( ~ o , % ;  0 0  %Y)dYodxo+C, (42) 

where C is a constant. 
The Green function satisfies the equation 

and has the boundary conditions 

- 0  on y = O  and y =  1, 
aG 
aY 
_ -  

acs! ac 
--+-to, - + o  as x+--co ,  
ax aY 

ac 
-+a2 as x - + + o o .  
ax 

(44) 

The solution can be obtained by the method of images and takes the form 

a 
47r 

x [cash T ~ ( Z  - 2 0 )  - cos 7r(y + yo)]} + &c'(z + zO) + const. 

@(Z0, yo; X,y) = - ~ O g ( 4 [ C O S h 7 r ~ ( ~ - ~ ~ ) - C O S T ( ~ - ~ ~ ) ]  

(45) 
If this expression is substituted in (42), then the two perturbation velocities 

u1 and wl may be obtained by forming the gradient of $(z, y). In practice this 
method is difficult to apply and an approximate solution is more suitable for 
estimating the flow pattern. 

Fourier series solution 

A solution for the perturbation velocity potential has been derived for the case 
when the heat addition function is given by f(x, y) = y. A numerical solution 
has also been obtained for the transverse velocity w1 that is produced by this 
form of heat addition, and this may be compared with the value which is given 
by the Fourier series solution. 

The equation governing the flow outside of the heated region is 

and, within the region of heat addition, 
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In order to provide the necessary boundary conditions for these two equations, 
it is assumed that at the two boundaries of the heated region, x = 0 and x = a, 
there is no discontinuity in the gradient of the perturbation velocity potential. 
The physical interpretation of this requirement is that the two perturbation 
velocities, u1 and vl, are continuous throughout the flow. 

If m = 2n- 1, then the solution of (46) and (47) is that, upstream, 

2 a emnax 
f k Y )  = - t: __ [l - e-mnza] cos (mny), (48) 

7 ~ ~ , , ~  m4 
in the heated region, 

and downstream, 
a2ax 2 m e-mnaz 

$@, y) = - - - c-  [l - emnaa] cos (mny). 
2 7 r 4 , 4  m4 

The two velocities u1 and vl are then obtained by forming the gradient of $(x, y), 
and it is clear that since the coefficients of the Fourier series for these velocities 
decrease very rapidly, a good approximation can be obtained by considering 
only the first terms of the series. The solution also shows that the production of 
a, transverse velocity v1 is a local effect which does not extend far outside of the 
region of heat addition. 

Numerical solution 

The displacement of the streamlines is determined by the transverse velocity 
v1 and to the first order in 8, the direction of the flow is given by 

d y = E v , -  - EV1. 
dx uo 

When considering the characteristics of a diabatic flow, it is useful to know the 
streamline pattern and the numerical solution was chosen so that the transverse 
velocity would be calculated directly. 

The equation governing the velocity perturbation vl is obtained by differ- 
entiating (37) with respect to y and eliminating ul. Withf(x, y) = y, this equation 
is 

and 

as1 a2v 

a22 ay2 
- + -2 = 1 within the heated region, 

aZVl a%, 
az2 ay2 
__ + __ = 0 elsewhere, 

where z = ax. The boundary conditions for these equations are 

and 

v l =  0 on y = O  and y =  1, 

v1+O as z - tkco .  

Since the production of a transverse velocity is a local effect, the boundary 
conditions, as z tends towards infinity, are applied at finite distances upstream 
and downstream of the heated region which extends from z = 0 t o  z = 1. As in 
the Fourier series solution, it is assumed that the perturbation velocity v1 is 
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continuous throughout the region of flow. The mesh size for the Merence 
equation was chosen as 1 = 3, and the boundary conditions were taken as 

v, = 0 on y = 0 and y = 1, on x = -2.416, and on x = 3.418. (52) 

If W& is the nth approximation to v,(iZ, j l ) ,  then within the heated region the 
iterative process for solving the difference equation for v1 is 

and, outside the heated region, 
wZz1 = wtj + &[ F?+i, j + wtj+l f w??? j + WZJ?:, - 4 wtj - J- 361 ,  (53) 

wzy = w;j+g[wF+,,j+ wt,+l+ W???j+ w;j2,-4w;j]. (54) 

z 

0.4167 
0.4167 
0.4167 
0.4167 
0.4167 
0.4167 
0.4167 

Y 
0~0000 
0.1667 
0.3333 
0.5000 
0.6667 
0.8333 
1~0000 

W 
o*oooo 

- 0.0555 
- 0.0871 
- 0.0973 
- 0.0871 
- 0.0555 

o*oooo 

VF 

o*oooo 
- 0.0555 
- 0.0870 
- 0.0971 
- 0.0870 
- 0.0555 

o*oooo 
W, numerical solution for vl. VF, fist term of the Fourier series solution. 

TABLE 1 

These two equations, along with the boundary conditions given in (52),  were 
solved with the aid of a digital computer, and table 1 shows that there is very 
close agreement between the values obtained by this method and the values 
obtained from the first term of the Fourier series solution for vl with act = 1. 

5. Density perturbations with Po(x) = 0 

The non-uniform addition of heat to a perfect gas flow produces both an over- 
all change in the mean density and a density gradient across the duct. From 
equations (36) and (37), we have 

Since bothp, and u., are zero far upstream, this equation may be integrated to give 

If the heat addition is confined to the region 0 < x ,< a, then, for x > a, 

p1 = - f ( x ,  y) dx - B2u1, IOU 
and the density perturbation far downstream is 

p 1 =  - ( ~ ~ ~ f ( s , Y ) d ~ + a 2 ~ 2 ~ ‘ ~ 0 1 f ( x , y ) d y d s ]  0 (57) 

This equation shows tha t  the density gradient across the duct is not a local 
effect like the transverse velocity, but is a feature which is retained in the flow 
far downstream of the heated region. 
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6. Streamline displacement with Fo(x) = 0 

The presence of a transverse velocity causes a displacement of the streamlines, 
and it has been shown that the flow direction is given by dy/dx = ewl. The 
streamline displacement Ay from far upstream to far downstream is then 

J - . o  

where the integration is performed along the streamline. To the first order in B ,  

this integration may be approximated by an integration parallel to the x-axis. 
Thus, introducing the perturbation velocity potential, we have 

This integral can be evaluated by applying Green’s theorem to (40) for the 
region bounded by the streamline and the duct wall. The streamline displace- 
ment can then be expressed as 

The same result may also be obtained by considering the continuity of the fluid 
between the streamline and the duct wall and using the equation for the density 
perturbation. 

Equation (60) is very useful for visualizing the type of flow pattern that is 
produced by simple heat addition functions such as linear, sinusoidal and step 
distributions. For the linear distributionf(x, y) = y, the displacement is given by 

Ay = &ay(y- 1)’ (61) 

and when y = 0.5, Ay = - 0.125ea. The displacement can also be estimated from 
the numerical solution by using a summation in place of the integration in (59). 
The value obtained by this method is Ay = -0-12495ea for y = 0.5. The very 
close agreement between these two values and also between those given in table 1 
confirms the suitability of the mesh size and the location of the boundary con- 
ditions in the numerical solution. 

7. Three-dimensional diabatic gas flows with axial symmetry 
A similar analysis can be made for the non-uniform addition of heat to an 

axially symmetric perfect gas flow. The flow, as shown in figure 2, is assumed to 
take place in a circular duct and the velocity and gas state far upstream of the 
region of heat addition are assumed to be uniform across the duct. The non- 
dimensional heating function is expressed as 

P(X, 99 = -ax) + ef@, r ) ,  
and the velocity and gas state are written in the form of perturbation series. 
It can then be shown that the first-order perturbation of vorticity can be zero 
only if Fo(x) or ef(x,  r )  is zero. This corresponds to the result which was deduced 
from (32) for the two-dimensional flow. 
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When Fo(x) = 0, the first-order vorticity perturbation is zero, and it is possible 
to d e h e  a perturbation velocity potential $(x, r )  such that 

where r is the non-dimensional radius and v, is the radial velocity perturbation. 
The velocity potential $(x7 r )  then satisfies the equation 

/ /  ./ / / / .  (0, I)/ / / / . / / / / / / / / 

I-- 

/ / /  / / / /  / / / / / / / /  / / / / / / /  

FIGURE 2. Three-dimensional diabatic gas flow with axial symmetry. 

which corresponds to (40) of the two-dimeneional analysis. The boundary 
conditions for (63) are 

_ -  ”- 0 on T =  0 and r =  1, 
ar 

where it is assumed that the heated region extends from z = 0 to z = a. 
For the parabolic distribution of heat addition defined by f(x, r )  = ray a solu- 

tion for $(x, T )  has been obtained in terms of zero-order Bessel functions. The 
flow upstream of the heated region is given by 

within the heated region by 

and downstream by 

where Jl(kn) = 0. (68) 
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As with the Fourier series solution, a good approximation may be obtained by 
taking only the first few terms of the series. 

The method for estimating the streamline displacement when Fo(x) = 0 can 
be extended to the three-dimensional axially symmetric flow to give 

For the particular form of heat addition considered above, the displacement is 
Ar = i m r ( r 2 -  l), which has a maximum value of Ar = - 0.104sa when r = 0.577. 
The general form of this flow is as shown in figure 2. 

8. Discussion 
For compressible gas flows, vorticity can be created if the cross-products of 

the temperature and entropy gradients are finite. In particular, for the flow of 
a perfect gas in a parallel walled duct, it has been shown that except when the 
temperature gradients are small, a non-uniform heat addition will produce a 
change in vorticity. A similar result can also be obtained for a three-dimensional 
flow in a circular duct with axial symmetry. In both cases it has been assumed 
that far upstream of the heated region, the velocity and gas state are uniform 
across the duct. 

The two solutions given in this paper are for the special case when the tem- 
perature gradients are small and the change in vorticity is then a second- or 
higher-order perturbation. The occurrence of a transverse velocity component 
may be explained in the following way. Although vorticity cannot be created, 
a density gradient can be produced by the non-uniform heat addition. The mass 
flow rate at a point ( + 00, y) far downstream of the heated region differs from that 
at the corresponding point ( - 00, y) far upstream and the streamline displace- 
ment to effect this change requires a transverse velocity perturbation. 

It is thought that the study of a feu- simple cases of non-uniform heat addition, 
such as the examples given in this paper, may help to illustrate some of the main 
features of it diabatic flow. Although the two solutions given are for irrotational 
flows, they do show the presence of a local transverse velocity, an over-all 
density change, a density gradient across the duct which is retained far down- 
stream and a streamline displacement. A more general form of the heat addition 
function will show all of these characteristics together with a first-order vorticity 
perturbation. 

The authors are grateful to Dr Sheila Brenner of the Department of Applied 
Mathematics, Liverpool University, for her advice and discussions on the paper. 
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